Simultaneous enhancement of cell proliferation and thermally induced harvest efficiency based on temperature-responsive cationic copolymer-grafted microcarriers

Atsushi Tamura, Masanori Nishi, Jun Kobayashi, Kenichi Nagase, Hirofumi Yajima, Masayuki Yamato, Teruo Okano

研究成果: Article査読

47 被引用数 (Scopus)

抄録

The development of large-scale suspension cell cultures using microcarriers has long been a focus of attention in the fields of pharmacy and biotechnology. Previously, we developed cell-detachable microcarriers based on temperature-responsive poly(N-isopropylacrylamide) (PIPAAm)-grafted beads, on which adhering cells can be noninvasively harvested by only reducing the temperature without the need for proteolytic enzyme treatment. In this study, to improve the cell harvest efficiency from bead surfaces while maintaining cell adhesion and proliferation properties, we prepared temperature-responsive cationic copolymer-grafted beads bearing a copolymer brush consisting of IPAAm, positively charged quaternary amine monomer (3-acrylamidopropyl trimethylammonium chloride; APTAC), and hydrophobic monomer (N-tert- butylacrylamide; tBAAm). The incorporation of positively charged APTAC into the grafted copolymer brush facilitated bead dispersibility in a cell culture system containing Chinese hamster ovary (CHO-K1) cells and consequently allowed for enhanced cell proliferation in the system compared to that of unmodified CMPS and conventional PIPAAm homopolymer-grafted beads. Additionally, P(IPAAm-co-APTAC-co-tBAAm) terpolymer-grafted beads exhibited the most rapid and efficient cell detachment behavior after the temperature was reduced to 20 °C, presumably because the highly hydrated APTAC promoted the overall hydration of the P(IPAAm-co-APTAC-co-tBAAm) chains. Therefore, P(IPAAm-co-APTAC-co-tBAAm) terpolymer-grafted microcarriers are effective in facilitating both cell proliferation and thermally induced cell detachment in a suspension culture system.

本文言語English
ページ(範囲)1765-1773
ページ数9
ジャーナルBiomacromolecules
13
6
DOI
出版ステータスPublished - 2012 6月 11
外部発表はい

ASJC Scopus subject areas

  • バイオエンジニアリング
  • 生体材料
  • ポリマーおよびプラスチック
  • 材料化学

フィンガープリント

「Simultaneous enhancement of cell proliferation and thermally induced harvest efficiency based on temperature-responsive cationic copolymer-grafted microcarriers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル