Single-Image Fence Removal Using Deep Convolutional Neural Network

Takuro Matsui, Masaaki Ikehara

研究成果: Article査読

2 被引用数 (Scopus)

抄録

In public spaces such as zoos and sports facilities, the presence of fences often annoys tourists and professional photographers. There is a demand for a post-processing tool to produce a non-occluded view from an image or video. This 'de-fencing' task is divided into two stages: one to detect fence regions and the other to fill the missing part. For over a decade, various methods have been proposed for video-based de-fencing. However, only a few single-image-based methods are proposed. In this paper, we focus on single-image fence removal. Conventional approaches suffer from inaccurate and non-robust fence detection and inpainting due to less content information. To solve these problems, we combine novel methods based on a deep convolutional neural network (CNN) and classical domain knowledge in image processing. In the training process, we are required to obtain both fence images and corresponding non-fence ground truth images. Therefore, we synthesize natural fence images from real images. Moreover, spacial filtering processing (e.g. a Laplacian filter and a Gaussian filter) improves the performance of the CNN for detection and inpainting. Our proposed method can automatically detect a fence and generate a clean image without any user input. Experimental results demonstrate that our method is effective for a broad range of fence images.

本文言語English
論文番号8933392
ページ(範囲)38846-38854
ページ数9
ジャーナルIEEE Access
8
DOI
出版ステータスPublished - 2020

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)
  • 材料科学(全般)
  • 工学(全般)

フィンガープリント

「Single-Image Fence Removal Using Deep Convolutional Neural Network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル