Singular values of the Dirac operator at nonzero density

Takuya Kanazawa, Tilo Wettig, Naoki Yamamoto

研究成果: Conference article査読

抄録

At nonzero density the eigenvalues of the Dirac operator move into the complex plane, while its singular values remain real and nonnegative. In QCD-like theories, the singular-value spectrum carries information on the diquark (or pionic) condensate. We have constructed low-energy effective theories in different density regimes and derived a number of exact results for the Dirac singular values, including Banks-Casher-type relations for the diquark (or pionic) condensate, Smilga-Stern-type relations for the slope of the singular-value density, and Leutwyler-Smilgatype sum rules for the inverse singular values. We also present a rigorous index theorem for non-Hermitian Dirac operators.

本文言語English
論文番号076
ジャーナルProceedings of Science
Part F130497
DOI
出版ステータスPublished - 2012
外部発表はい
イベント30th International Symposium on Lattice Field Theory, Lattice 2012 - Cairns, Australia
継続期間: 2012 6月 242012 6月 29

ASJC Scopus subject areas

  • 一般

フィンガープリント

「Singular values of the Dirac operator at nonzero density」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル