Skeleton inequalities and mean field properties for lattice spin systems

Takashi Hara, Tetsuya Hattori, Hal Tasaki

研究成果: Article査読

5 被引用数 (Scopus)

抄録

We present a proof of skeleton inequalities for ferromagnetic lattice spin systems with potential V(φ2) = (a/2)φ2 + Σn = 2M2n/(2n)!} φ2n (a real, λ2n ≥0) generalizing the Brydges-Fröhlich-Sokal and Bovier-Felder methods. As an application of the inequalities, we prove that, for sufficiently soft systems in d > 4 dimensions, critical exponents γ, α, and Δ4 take their mean-field values (i.e., γ = 1, α = 0, and Δ4 = 3/2).

本文言語English
ページ(範囲)2922-2929
ページ数8
ジャーナルJournal of Mathematical Physics
26
11
DOI
出版ステータスPublished - 1985 1 1
外部発表はい

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

フィンガープリント 「Skeleton inequalities and mean field properties for lattice spin systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル