Solitary wave solutions to the Isobe-Kakinuma model for water waves

Mathieu Colin, Tatsuo Iguchi

研究成果: Article査読

抄録

We consider the Isobe-Kakinuma model for two-dimensional water waves in the case of a flat bottom. The Isobe-Kakinuma model is a system of Euler-Lagrange equations for a Lagrangian approximating Luke's Lagrangian for water waves. We show theoretically the existence of a family of small amplitude solitary wave solutions to the Isobe-Kakinuma model in the long wave regime. Numerical analysis for large amplitude solitary wave solutions is also provided and suggests the existence of a solitary wave of extreme form with a sharp crest.

本文言語English
ページ(範囲)52-80
ページ数29
ジャーナルStudies in Applied Mathematics
145
1
DOI
出版ステータスPublished - 2020 7月 1

ASJC Scopus subject areas

  • 応用数学

フィンガープリント

「Solitary wave solutions to the Isobe-Kakinuma model for water waves」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル