Solvability of the initial value problem to a model system for water waves

Yuuta Murakami, Tatsuo Iguchi

研究成果: Article査読

5 被引用数 (Scopus)

抄録

We consider the initial value problem to a model system for water waves. The model system is the Euler–Lagrange equations for an approximate Lagrangian which is derived from Luke’s Lagrangian for water waves by approximating the velocity potential in the Lagrangian. The model are nonlinear dispersive equations and the hypersurface t = 0 is characteristic for the model equations. Therefore, the initial data have to be restricted in an infinite dimensional manifold in order to the existence of the solution. Under this necessary condition and a sign condition, which corresponds to a generalized Rayleigh–Taylor sign condition for water waves, on the initial data, we show that the initial value problem is solvable locally in time in Sobolev spaces.

本文言語English
ページ(範囲)470-491
ページ数22
ジャーナルKodai Mathematical Journal
38
2
DOI
出版ステータスPublished - 2015 7月 11

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Solvability of the initial value problem to a model system for water waves」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル