TY - JOUR
T1 - Solvability of the Initial Value Problem to the Isobe–Kakinuma Model for Water Waves
AU - Nemoto, Ryo
AU - Iguchi, Tatsuo
N1 - Publisher Copyright:
© 2017, Springer International Publishing AG.
PY - 2018/6/1
Y1 - 2018/6/1
N2 - We consider the initial value problem to the Isobe–Kakinuma model for water waves and the structure of the model. The Isobe–Kakinuma model is the Euler–Lagrange equations for an approximate Lagrangian which is derived from Luke’s Lagrangian for water waves by approximating the velocity potential in the Lagrangian. The Isobe–Kakinuma model is a system of second order partial differential equations and is classified into a system of nonlinear dispersive equations. Since the hypersurface t= 0 is characteristic for the Isobe–Kakinuma model, the initial data have to be restricted in an infinite dimensional manifold for the existence of the solution. Under this necessary condition and a sign condition, which corresponds to a generalized Rayleigh–Taylor sign condition for water waves, on the initial data, we show that the initial value problem is solvable locally in time in Sobolev spaces. We also discuss the linear dispersion relation to the model.
AB - We consider the initial value problem to the Isobe–Kakinuma model for water waves and the structure of the model. The Isobe–Kakinuma model is the Euler–Lagrange equations for an approximate Lagrangian which is derived from Luke’s Lagrangian for water waves by approximating the velocity potential in the Lagrangian. The Isobe–Kakinuma model is a system of second order partial differential equations and is classified into a system of nonlinear dispersive equations. Since the hypersurface t= 0 is characteristic for the Isobe–Kakinuma model, the initial data have to be restricted in an infinite dimensional manifold for the existence of the solution. Under this necessary condition and a sign condition, which corresponds to a generalized Rayleigh–Taylor sign condition for water waves, on the initial data, we show that the initial value problem is solvable locally in time in Sobolev spaces. We also discuss the linear dispersion relation to the model.
UR - http://www.scopus.com/inward/record.url?scp=85048067033&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048067033&partnerID=8YFLogxK
U2 - 10.1007/s00021-017-0338-1
DO - 10.1007/s00021-017-0338-1
M3 - Article
AN - SCOPUS:85048067033
SN - 1422-6928
VL - 20
SP - 631
EP - 653
JO - Journal of Mathematical Fluid Mechanics
JF - Journal of Mathematical Fluid Mechanics
IS - 2
ER -