Some metric properties of α-continued fractions

Hitoshi Nakada, Rie Natsui

研究成果: Article

8 引用 (Scopus)

抜粋

The α-continued fraction is a modification of the nearest integer continued fractions taking n as the integer part of y when y ε [n - 1 + α, n + α), instead of the nearest integer. For x εo[α - 1, α), we have the following α-continued fraction expansion: with Cn ≥ 1 and εn = ±1 for n ≥ 1. We prove the Borel-Bernstein theorem for α-continued fractions and also discuss some metrical properties related to max1 ≤ n ≤ N Cn. Indeed, we prove that exist and have the same constant for almost every x.

元の言語English
ページ(範囲)287-300
ページ数14
ジャーナルJournal of Number Theory
97
発行部数2
DOI
出版物ステータスPublished - 2002 12 1

ASJC Scopus subject areas

  • Algebra and Number Theory

フィンガープリント Some metric properties of α-continued fractions' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用