Space-time continuous limit of random walks with hyperbolic scaling

研究成果: Article査読

5 被引用数 (Scopus)

抄録

We consider space-time inhomogeneous one-dimensional random walks which move by ±Δx in each time interval Δt with arbitrary transition probabilities depending on position and time. Unlike Donsker's theorem, we study the continuous limit of the random walks as Δx,Δt→0 under hyperbolic scaling λ1≥ Δt/Δx≥λ0>0 with fixed numbers λ1 and λ0. Our aim is to present explicit formulas and estimates of probabilistic quantities which characterize asymptotics of the random walks as Δx,Δt→0. This provides elementary proofs of several limit theorems on the random walks. In particular, if transition probabilities satisfy a Lipschitz condition, the random walks converge to solutions of ODEs. This is the law of large numbers. The results here will be foundations of a stochastic and variational approach to finite difference approximation of nonlinear PDEs of hyperbolic types.

本文言語English
ページ(範囲)264-271
ページ数8
ジャーナルNonlinear Analysis, Theory, Methods and Applications
102
DOI
出版ステータスPublished - 2014 6
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Space-time continuous limit of random walks with hyperbolic scaling」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル