Spanning trees in 3-connected K3,t-minor-free graphs

Katsuhiro Ota, Kenta Ozeki

研究成果: Article査読

2 被引用数 (Scopus)

抄録

Barnette proved that every 3-connected planar graph has a 3-tree, where a 3-tree is a spanning tree whose maximum degree is at most three. In this paper, we consider an improvement of Barnette's result for the direction of K3, t-minor-free graphs. Note that any planar graph is K3, 3-minor-free. Actually, we show that for an even integer t ≥ 3, any 3-connected K3, t -minor-free graph has a (t - 1)-tree.

本文言語English
ページ(範囲)145-149
ページ数5
ジャーナルElectronic Notes in Discrete Mathematics
34
DOI
出版ステータスPublished - 2009 8 1

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Applied Mathematics

フィンガープリント 「Spanning trees in 3-connected K<sub>3,t</sub>-minor-free graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル