Sparse Stable Outlier-Robust Regression with Minimax Concave Function

Kyohei Suzuki, Masahiro Yukawa

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

We propose a novel formulation for stable sparse recovery from measurements contaminated by outliers and severe noise. The proposed formulation evaluates noise and outliers with a quadratic function and the minimax concave function, respectively, to reflect their statistical properties (Gaussianity and sparsity). This makes a significant difference from the conventional robust methods, which typically evaluate noise and outliers with a single loss function, leading to stability of the estimate. While the proposed formulation involves a nonconvex penalty to reduce estimation biases of sparse estimates, overall convexity of the whole cost is guaranteed under a certain condition by adding the Tikhonov regularization term. The problem is solved via a reformulation by the forward-backward primal-dual splitting algorithm, for which convergence conditions are derived. The remarkable outlier-robustness of the proposed method is demonstrated by simulations under highly noisy environments.

本文言語English
ホスト出版物のタイトル2022 IEEE 32nd International Workshop on Machine Learning for Signal Processing, MLSP 2022
出版社IEEE Computer Society
ISBN(電子版)9781665485470
DOI
出版ステータスPublished - 2022
イベント32nd IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2022 - Xi'an, China
継続期間: 2022 8月 222022 8月 25

出版物シリーズ

名前IEEE International Workshop on Machine Learning for Signal Processing, MLSP
2022-August
ISSN(印刷版)2161-0363
ISSN(電子版)2161-0371

Conference

Conference32nd IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2022
国/地域China
CityXi'an
Period22/8/2222/8/25

ASJC Scopus subject areas

  • 人間とコンピュータの相互作用
  • 信号処理

フィンガープリント

「Sparse Stable Outlier-Robust Regression with Minimax Concave Function」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル