Specification testing for errors-in-variables models

Taisuke Otsu, Luke Taylor

研究成果: Article査読

3 被引用数 (Scopus)


This paper considers specification testing for regression models with errors-in-variables and proposes a test statistic comparing the distance between the parametric and nonparametric fits based on deconvolution techniques. In contrast to the methods proposed by Hall and Ma (2007, Annals of Statistics, 35, 2620-2638) and Song (2008, Journal of Multivariate Analysis, 99, 2406-2443), our test allows general nonlinear regression models and possesses complementary local power properties. We establish the asymptotic properties of our test statistic for the ordinary and supersmooth measurement error densities. Simulation results endorse our theoretical findings: our test has advantages in detecting high-frequency alternatives and dominates the existing tests under certain specifications.

ジャーナルEconometric Theory
出版ステータスAccepted/In press - 2020

ASJC Scopus subject areas

  • Social Sciences (miscellaneous)
  • Economics and Econometrics

フィンガープリント 「Specification testing for errors-in-variables models」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。