Spin-torque generator engineered by natural oxidation of Cu

Hongyu An, Yuito Kageyama, Yusuke Kanno, Nagisa Enishi, Kazuya Ando

研究成果: Article

44 引用 (Scopus)

抜粋

The spin Hall effect is a spin-orbit coupling phenomenon, which enables electric generation and detection of spin currents. This relativistic effect provides a way for realizing efficient spintronic devices based on electric manipulation of magnetization through spin torque. However, it has been believed that heavy metals are indispensable for the spin-torque generation. Here we show that the spin Hall effect in Cu, a light metal with weak spin-orbit coupling, is significantly enhanced through natural oxidation. We demonstrate that the spin-torque generation efficiency of a Cu/Ni81Fe19 bilayer is enhanced by over two orders of magnitude by tuning the surface oxidation, reaching the efficiency of Pt/ferromagnetic metal bilayers. This finding illustrates a crucial role of oxidation in the spin Hall effect, opening a route for engineering the spin-torque generator by oxygen control and manipulating magnetization without using heavy metals.

元の言語English
記事番号13069
ジャーナルNature Communications
7
DOI
出版物ステータスPublished - 2016 10 11

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

フィンガープリント Spin-torque generator engineered by natural oxidation of Cu' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用