Spring-shaped stimuli-responsive hydrogel actuator for magnifying compression and expansion motions

Koki Yoshida, Shunsuke Nakajima, Ryuji Kawano, Hiroaki Onoe

研究成果: Conference contribution

抄録

This study describes stimuli-responsive hydrogel micro-actuators for compressive/expanding actuation of stimuli-responsive hydrogels. Inspired by living bioactuators such as a stalk in vorticella, we applied this spring-shaped structure to engineered stimuli-responsive hydrogel actuators to magnify its degree of deformation. We achieved the shrinkage degree of ∼0.2, which is the approximately 2 time smaller than that of bulk hydrogel material (shrinkage degree ∼0.4), without any modification of molecules. Furthermore, both compression and expansion motions were demonstrated by changing the pattern of stimuli-responsive part in the microsprings, indicating that our approach could enable wide variety of motions by their patterning condition of microsprings. Our large compression/expansion stimuli-responsive hydrogel microsprings have immense potential to be applied in various microengineering products including soft actuators, chemical sensors, and medical applications.

本文言語English
ホスト出版物のタイトル2018 IEEE Micro Electro Mechanical Systems, MEMS 2018
出版社Institute of Electrical and Electronics Engineers Inc.
ページ579-580
ページ数2
2018-January
ISBN(電子版)9781538647820
DOI
出版ステータスPublished - 2018 4 24
イベント31st IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2018 - Belfast, United Kingdom
継続期間: 2018 1 212018 1 25

Other

Other31st IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2018
CountryUnited Kingdom
CityBelfast
Period18/1/2118/1/25

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Mechanical Engineering
  • Electrical and Electronic Engineering

フィンガープリント 「Spring-shaped stimuli-responsive hydrogel actuator for magnifying compression and expansion motions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル