Steepening Squared Error Function Facilitates Online Adaptation of Gaussian Scales

Masa Aki Takizawa, Masahiro Yukawa

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

We previously proposed a joint learning scheme of Gaussian parameters (scales and centers) and coefficients for online nonlinear estimation. The instantaneous squared error cost in terms of the Gaussian scales, however, tends to have shallow slopes when the initial guess is far from optimal, causing extremely slow convergence. In this paper, we propose steepening the cost function by adding a squared distance function from the instantaneously-optimal scale. Numerical examples show that the use of the steepened cost ameliorates the convergence behaviors of the scale parameters in inappropriate initial-scale settings.

本文言語English
ホスト出版物のタイトル2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ5450-5454
ページ数5
ISBN(電子版)9781509066315
DOI
出版ステータスPublished - 2020 5
イベント2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
継続期間: 2020 5 42020 5 8

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2020-May
ISSN(印刷版)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
CountrySpain
CityBarcelona
Period20/5/420/5/8

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

フィンガープリント 「Steepening Squared Error Function Facilitates Online Adaptation of Gaussian Scales」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル