Stock return predictability: A factor-augmented predictive regression system with shrinkage method

Saburo Ohno, Tomohiro Ando

研究成果: Article査読

7 被引用数 (Scopus)

抄録

To predict stock market behaviors, we use a factor-augmented predictive regression with shrinkage to incorporate the information available across literally thousands of financial and economic variables. The system is constructed in terms of both expected returns and the tails of the return distribution. We develop the variable selection consistency and asymptotic normality of the estimator. To select the regularization parameter, we employ the prediction error, with the aim of predicting the behavior of the stock market. Through analysis of the Tokyo Stock Exchange, we find that a large number of variables provide useful information for predicting stock market behaviors.

本文言語English
ページ(範囲)29-60
ページ数32
ジャーナルEconometric Reviews
37
1
DOI
出版ステータスPublished - 2018 1月 2
外部発表はい

ASJC Scopus subject areas

  • 経済学、計量経済学

フィンガープリント

「Stock return predictability: A factor-augmented predictive regression system with shrinkage method」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル