Stream-based real world information integration framework

Hiroyuki Kitagawa, Yousuke Watanabe, Hideyuki Kawashima, Toshiyuki Amagasa

研究成果: Chapter

2 引用 (Scopus)

抜粋

For real world oriented applications to easily use sensor data obtained frommultiple wireless sensor networks, a data management infrastructure is mandatory. The infrastructure design should be based on the philosophy of a novel framework beyond the relational data management for two reasons: First is the freshness of data. To keep sensor data fresh, an infrastructure should process data efficiently; this means conventional time consuming transaction processing methodology is inappropriate. Second is the diversity of functions. The primary purpose of sensor data applications is to detect events; unfortunately, relational operators contribute little toward this purpose. This chapter presents a framework that directly supports efficient processing and a variety of advanced functions. Stream processing is the key concept of the framework. Regarding the efficiency requirement, we present a multiple query optimization technique for query processing over data streams; we also present an efficient data archiving technique. To meet the functions requirement, we present several techniques on event detection, which include complex event processing, probabilistic reasoning, and continuous media integration.

元の言語English
ホスト出版物のタイトルWireless Sensor Network Technologies for the Information Explosion Era
編集者Takahiro Hara, Erik Buchmann, Vladimir Zadorozhny
ページ173-204
ページ数32
DOI
出版物ステータスPublished - 2010 9 10
外部発表Yes

出版物シリーズ

名前Studies in Computational Intelligence
278
ISSN(印刷物)1860-949X

ASJC Scopus subject areas

  • Artificial Intelligence

フィンガープリント Stream-based real world information integration framework' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Kitagawa, H., Watanabe, Y., Kawashima, H., & Amagasa, T. (2010). Stream-based real world information integration framework. : T. Hara, E. Buchmann, & V. Zadorozhny (版), Wireless Sensor Network Technologies for the Information Explosion Era (pp. 173-204). (Studies in Computational Intelligence; 巻数 278). https://doi.org/10.1007/978-3-642-13965-9_6