TY - JOUR
T1 - Structural and biological characterization of Fe3O4-loaded spherical and tubular liposomes for use in drug delivery systems
AU - Sakuragi, Mina
AU - Taguchi, Kazuaki
AU - Kusakabe, Katsuki
N1 - Publisher Copyright:
© 2017 The Japan Society of Applied Physics.
PY - 2017/5
Y1 - 2017/5
N2 - Magnetic liposomes containing Fe3O4 nanoparticles were prepared using colipids [1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC)] and mixtures of the colipids with an anionic lipid [1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG)] or a cationic lipid [cetyltrimethylammonium bromide (CTAB)]. Transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) analysis showed that the magnetic liposomes containing DC8,9PC and DOPC were tubular and spherical in structure, respectively. The effects of an external magnetic field and the structure of the liposomes on cellular association were investigated. The external magnetic field increased cellular association and uptake levels independent of the structure both in vitro and in vivo. Although the level of in vitro cellular association for the tubular liposomes was higher than that for the spherical liposomes, there was no significant difference in the level of in vivo uptake of fluorescent Fe3O4 nanoparticles in the mouse liver. Finally, the magnetic liposomes were found to be biocompatible by haematological and serum chemical analyses.
AB - Magnetic liposomes containing Fe3O4 nanoparticles were prepared using colipids [1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC)] and mixtures of the colipids with an anionic lipid [1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG)] or a cationic lipid [cetyltrimethylammonium bromide (CTAB)]. Transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) analysis showed that the magnetic liposomes containing DC8,9PC and DOPC were tubular and spherical in structure, respectively. The effects of an external magnetic field and the structure of the liposomes on cellular association were investigated. The external magnetic field increased cellular association and uptake levels independent of the structure both in vitro and in vivo. Although the level of in vitro cellular association for the tubular liposomes was higher than that for the spherical liposomes, there was no significant difference in the level of in vivo uptake of fluorescent Fe3O4 nanoparticles in the mouse liver. Finally, the magnetic liposomes were found to be biocompatible by haematological and serum chemical analyses.
UR - http://www.scopus.com/inward/record.url?scp=85018390523&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85018390523&partnerID=8YFLogxK
U2 - 10.7567/JJAP.56.055002
DO - 10.7567/JJAP.56.055002
M3 - Article
AN - SCOPUS:85018390523
SN - 0021-4922
VL - 56
JO - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
JF - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
IS - 5
M1 - 055002
ER -