TY - JOUR
T1 - Substrate-dependent bidirectional modulation of P-glycoprotein-mediated drug resistance by erlotinib
AU - Noguchi, Kohji
AU - Kawahara, Haruka
AU - Kaji, Airi
AU - Katayama, Kazuhiro
AU - Mitsuhashi, Junko
AU - Sugimoto, Yoshikazu
PY - 2009/9
Y1 - 2009/9
N2 - Epidermal growth factor receptor tyrosine kinase inhibitors (EGFRTKIs) inhibit the function of certain adenosine triphosphate (ATP)- binding cassette transporters, including P-glycoprotein/ABCB1 and breast cancer resistance protein (BCRP)/ABCG2. We previously reported an antagonistic activity of gefitinib towards BCRP. We have now analyzed the effects of erlotinib, another EGFR-TKI, on P-glycoprotein and BCRP. As with gefitinib, erlotinib effectively reversed BCRPmediated resistance to SN-38 (7-ethyl-10-hydroxycamptothecin) and mitoxantrone. In contrast, we found that erlotinib effectively suppressed P-glycoprotein-mediated resistance to vincristine and paclitaxel, but did not suppress resistance to mitoxantrone and doxorubicin. Conversely, erlotinib appeared to enhance P-glycoproteinmediated resistance to mitoxantrone in K562/MDR cells. This bidirectional activity of erlotinib was not observed with verapamil, a typical P-glycoprotein inhibitor. Flow cytometric analysis showed that erlotinib co-treatment restored intracellular accumulation of mitoxantrone in K562 cells expressing BCRP, but not in cells expressing P-glycoprotein. Consistently, erlotinib did not inhibit mitoxantrone efflux in K562/MDR cells although it did vincristine efflux in K562/MDR cells and mitoxantrone efflux in K562/BCRP cells. Intravesicular transport assay showed that erlotinib inhibited both P-glycoprotein-mediated vincristine transport and BCRP-mediated estrone 3-sulfate transport. Intriguingly, Lineweaver-Burk plot suggested that the inhibitory mode of erlotinib was a mixed type for P-glycoprotein-mediated vincristine transport whereas it was a competitive type for BCRP-mediated estrone 3-sulfate transport. Collectively, these observations indicate that the pharmacological activity of erlotinib on P-glycoprotein-mediated drug resistance is dependent upon the transporter substrate. These findings will be useful in understanding the pharmacological interactions of erlotinib used in combinational chemotherapy.
AB - Epidermal growth factor receptor tyrosine kinase inhibitors (EGFRTKIs) inhibit the function of certain adenosine triphosphate (ATP)- binding cassette transporters, including P-glycoprotein/ABCB1 and breast cancer resistance protein (BCRP)/ABCG2. We previously reported an antagonistic activity of gefitinib towards BCRP. We have now analyzed the effects of erlotinib, another EGFR-TKI, on P-glycoprotein and BCRP. As with gefitinib, erlotinib effectively reversed BCRPmediated resistance to SN-38 (7-ethyl-10-hydroxycamptothecin) and mitoxantrone. In contrast, we found that erlotinib effectively suppressed P-glycoprotein-mediated resistance to vincristine and paclitaxel, but did not suppress resistance to mitoxantrone and doxorubicin. Conversely, erlotinib appeared to enhance P-glycoproteinmediated resistance to mitoxantrone in K562/MDR cells. This bidirectional activity of erlotinib was not observed with verapamil, a typical P-glycoprotein inhibitor. Flow cytometric analysis showed that erlotinib co-treatment restored intracellular accumulation of mitoxantrone in K562 cells expressing BCRP, but not in cells expressing P-glycoprotein. Consistently, erlotinib did not inhibit mitoxantrone efflux in K562/MDR cells although it did vincristine efflux in K562/MDR cells and mitoxantrone efflux in K562/BCRP cells. Intravesicular transport assay showed that erlotinib inhibited both P-glycoprotein-mediated vincristine transport and BCRP-mediated estrone 3-sulfate transport. Intriguingly, Lineweaver-Burk plot suggested that the inhibitory mode of erlotinib was a mixed type for P-glycoprotein-mediated vincristine transport whereas it was a competitive type for BCRP-mediated estrone 3-sulfate transport. Collectively, these observations indicate that the pharmacological activity of erlotinib on P-glycoprotein-mediated drug resistance is dependent upon the transporter substrate. These findings will be useful in understanding the pharmacological interactions of erlotinib used in combinational chemotherapy.
UR - http://www.scopus.com/inward/record.url?scp=70149084335&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70149084335&partnerID=8YFLogxK
U2 - 10.1111/j.1349-7006.2009.01213.x
DO - 10.1111/j.1349-7006.2009.01213.x
M3 - Article
C2 - 19493273
AN - SCOPUS:70149084335
SN - 1347-9032
VL - 100
SP - 1701
EP - 1707
JO - Cancer Science
JF - Cancer Science
IS - 9
ER -