Symbolic hierarchical clustering for visual analogue scale data

Kotoe Katayama, Rui Yamaguchi, Seiya Imoto, Hideaki Tokunaga, Yoshihiro Imazu, Keiko Matsuura, Kenji Watanabe, Satoru Miyano

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

We propose a hierarchical clustering in the framework of Symbolic Data Analysis(SDA). SDA was proposed by Diday at the end of the 1980s and is a new approach for analysing huge and complex data. In SDA, an observation is described by not only numerical values but also "higher-level units"; sets, intervals, distributions, etc. Most SDA works have dealt with only intervals as the descriptions. In this paper, we define "pain distribution" as new type data in SDA and propose a hierarchical clustering for this new type data.

本文言語English
ホスト出版物のタイトルIntelligent Decision Technologies - Proceedings of the 3rd International Conference on Intelligent Decision Technologies, IDT'2011
ページ799-805
ページ数7
DOI
出版ステータスPublished - 2011 12 1
イベント3rd International Conference on Intelligent Decision Technologies, IDT'2011 - Piraeus, Greece
継続期間: 2011 7 202011 7 22

出版物シリーズ

名前Smart Innovation, Systems and Technologies
10 SIST
ISSN(印刷版)2190-3018
ISSN(電子版)2190-3026

Other

Other3rd International Conference on Intelligent Decision Technologies, IDT'2011
国/地域Greece
CityPiraeus
Period11/7/2011/7/22

ASJC Scopus subject areas

  • 決定科学(全般)
  • コンピュータ サイエンス(全般)

フィンガープリント

「Symbolic hierarchical clustering for visual analogue scale data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル