Symbolization-based differential evolution strategy for identification of structural parameters

Rongshuai Li, Akira Mita, Jin Zhou

研究成果: Article査読

13 被引用数 (Scopus)

抄録

SUMMARY This new method of identifying structural parameters, called 'symbolization-based differential evolution strategy' (SDES), merges the advantages of symbolic time series analysis and differential evolution (DE). Data symbolization in SDES alleviates the effects of harmful noise. SDES was numerically compared with particle swarm optimization and DE on raw acceleration data. These simulations revealed that SDES provided better estimates of structural parameters when the data were contaminated by noise. We applied SDES to experimental data to assess its feasibility in realistic problems. SDES performed much better than particle swarm optimization and DE on raw acceleration data. The simulations and experiments show that SDES is a powerful tool for identifying unknown parameters of structural systems even when the data are contaminated with relatively large amounts of noise.

本文言語English
ページ(範囲)1255-1270
ページ数16
ジャーナルStructural Control and Health Monitoring
20
10
DOI
出版ステータスPublished - 2013 10

ASJC Scopus subject areas

  • 土木構造工学
  • 建築および建設
  • 材料力学

フィンガープリント

「Symbolization-based differential evolution strategy for identification of structural parameters」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル