Temperature-responsive fluorescence polymer probes with accurate thermally controlled cellular uptakes

Yuki Hiruta, Mirai Shimamura, Minami Matsuura, Yutaro Maekawa, Takaaki Funatsu, Yuichi Suzuki, Eri Ayano, Teruo Okano, Hideko Kanazawa

研究成果: Article査読

63 被引用数 (Scopus)

抄録

Poly(N-isopropylacrylamide) (PNIPAAm)-based temperature-responsive fluorescence polymer probes were developed using radical polymerization, with 3-mercaptopropionic acid as the chain-transfer agent, followed by activation of terminal carboxyl groups with N-hydroxysuccinimide and reaction with 5-aminofluorescein (FL). The lower critical solution temperatures (LCSTs) of the resulting fluorescent polymer probes differed depending on the copolymer composition, and had a sharp phase-transition (hydrophilic/hydrophobic) boundary at the LCST. The cellular uptakes of the fluorescent polymer probes were effectively suppressed below the LCST, and increased greatly above the LCST. In particular, the cellular uptake of a copolymer with N,N- dimethylaminopropylacrylamide, P(NIPAAm-co-DMAPAAm2%)-FL (LCST: 37.4 C), can be controlled within only 1 C near body temperature, which is suitable for biological applications. These results indicated that the cellular uptakes of thermoresponsive polymers could be accurately controlled by the temperature, and such polymers have potential applications in discriminating between normal and pathological cells, and in intracellular drug delivery systems with local hyperthermia.

本文言語English
ページ(範囲)281-285
ページ数5
ジャーナルACS Macro Letters
3
3
DOI
出版ステータスPublished - 2014 3月 18

ASJC Scopus subject areas

  • 有機化学
  • ポリマーおよびプラスチック
  • 無機化学
  • 材料化学

フィンガープリント

「Temperature-responsive fluorescence polymer probes with accurate thermally controlled cellular uptakes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル