The algebraic integrability of the quantum toda lattice and the radon transform

研究成果: Article

抜粋

We study the maximal commutative ring of partial differential operators which includes the quantum completely integrable system defined by the quantum Toda lattice. Kostant shows that the image of the generalized Harish-Chandra homomorphism of the center of the enveloping algebra is commutative (Kostant in Invent. Math. 48:101-184, 1978). We demonstrate the commutativity of the ring of partial differential operators whose principal symbols are N-invariant. Our commutative ring includes the commutative system of Kostant (Invent. Math. 48:101-184, 1978). The main tools in this paper are Fourier integral operators and Radon transforms.

元の言語English
ページ(範囲)80-100
ページ数21
ジャーナルJournal of Fourier Analysis and Applications
15
発行部数1
DOI
出版物ステータスPublished - 2009 2 1

ASJC Scopus subject areas

  • Analysis
  • Mathematics(all)
  • Applied Mathematics

フィンガープリント The algebraic integrability of the quantum toda lattice and the radon transform' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用