The finite model property for various fragments of intuitionistic linear logic

Mitsuhiro Okada, Kazushige Terui

研究成果: Article査読

71 被引用数 (Scopus)

抄録

Recently Lafont [6] showed the finite model property for the multiplicative additive fragment of linear logic (MALL) and for affine logic (LLW), i.e., linear logic with weakening. In this paper, we shall prove the finite model property for intuitionistic versions of those, i.e. intuitionistic MALL (which we call IMALL), and intuitionistic LLW (which we call ILLW). In addition, we shall show the finite model property for contractive linear logic (LLC), i.e., linear logic with contraction, and for its intuitionistic version (ILLC). The finite model property for related substructural logics also follow by our method. In particular, we shall show that the property holds for all of FL and GL- -systems except FLc and GL-c of Ono [11], that will settle the open problems stated in Ono [12].

本文言語English
ページ(範囲)790-802
ページ数13
ジャーナルJournal of Symbolic Logic
64
2
DOI
出版ステータスPublished - 1999 6

ASJC Scopus subject areas

  • 哲学
  • 論理

フィンガープリント

「The finite model property for various fragments of intuitionistic linear logic」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル