The minimum set of μ -compatible subgames for obtaining a stable set in an assignment game

Keisuke Bando, Yakuma Furusawa

研究成果: Article査読

抄録

This study analyzes von Neumann-Morgenstern stable sets in an assignment game. Núñez and Rafels (2013) have shown that the union of the extended cores of all μ-compatible subgames is a stable set. Typically, the set of all μ-compatible subgames includes many elements, most of which are inessential for obtaining the stable set. We provide an algorithm to find a set of μ-compatible subgames for obtaining the stable set when the valuation matrix is positive. Moreover, this algorithm finds the minimum set of μ-compatible subgames for obtaining the stable set when each column and row in the valuation matrix is constituted from different positive numbers. Our simulation result reveals that the average size of the minimum set of μ-compatible subgames for obtaining the stable set is significantly lower than that of the set of all μ-compatible subgames.

本文言語English
ページ(範囲)231-252
ページ数22
ジャーナルInternational Journal of Game Theory
52
1
DOI
出版ステータスPublished - 2023 3月

ASJC Scopus subject areas

  • 統計学および確率
  • 数学(その他)
  • 社会科学(その他)
  • 経済学、計量経済学
  • 統計学、確率および不確実性

フィンガープリント

「The minimum set of μ -compatible subgames for obtaining a stable set in an assignment game」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル