The nonuniqueness of the tangent cones at infinity of Ricci-flat manifolds

研究成果: Article査読

3 被引用数 (Scopus)

抄録

Colding and Minicozzi established the uniqueness of the tangent cones at infinity of Ricci-flat manifolds with Euclidean volume growth where at least one tangent cone at infinity has a smooth cross section. In this paper, we raise an example of a Ricci-flat manifold implying that the assumption for the volume growth in the above result is essential. More precisely, we construct a complete Ricci-flat manifold of dimension 4 with non-Euclidean volume growth that has infinitely many tangent cones at infinity where one of them has a smooth cross section.

本文言語English
ページ(範囲)2683-2723
ページ数41
ジャーナルGeometry and Topology
21
5
DOI
出版ステータスPublished - 2017 8月 15

ASJC Scopus subject areas

  • 幾何学とトポロジー

フィンガープリント

「The nonuniqueness of the tangent cones at infinity of Ricci-flat manifolds」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル