The parabolic Harnack inequality for the time dependent Ginzburg-Landau type SPDE and its application

研究成果: Article査読

15 被引用数 (Scopus)

抄録

The main purpose of this paper is to establish the parabolic Harnack inequality for the transition semigroup associated with the time dependent Ginzburg-Landau type stochastic partial differential equation (=SPDE, in abbreviation). In view of quantum field theory, this dynamics is called a P(φ)1-time evolution. We prove the main result by adopting a stochastic approach which is different from Bakry-Emery's Γ2- method. As an application of our result, we study some estimates on the transition probability for our dynamics. We also discuss the Varadhan type asymptotics.

本文言語English
ページ(範囲)61-84
ページ数24
ジャーナルPotential Analysis
22
1
DOI
出版ステータスPublished - 2005 2月
外部発表はい

ASJC Scopus subject areas

  • 分析

フィンガープリント

「The parabolic Harnack inequality for the time dependent Ginzburg-Landau type SPDE and its application」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル