The upper bound of the number of cycles in a 2-factor of a line graph

Jun Fujisawa, Liming Xiong, Kiyoshi Yoshimoto, Shenggui Zhang

研究成果: Article査読

11 被引用数 (Scopus)

抄録

Let G be a simple graph with order n and minimum degree at least two. In this paper, we prove that if every odd branch-bond in G has an edge-branch, then its line graph has a 2-factor with at most 3n-2/8 components. For a simple graph with minimum degree at least three also, the same conclusion holds.

本文言語English
ページ(範囲)72-82
ページ数11
ジャーナルJournal of Graph Theory
55
1
DOI
出版ステータスPublished - 2007 5
外部発表はい

ASJC Scopus subject areas

  • Geometry and Topology

フィンガープリント 「The upper bound of the number of cycles in a 2-factor of a line graph」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル