THEMIS: Context-Sensitive Similarity Analysis for Wound Imagery Using Mathematical Model of Meaning

Yume Asayama, Baoqing Wang, Masanori Nakayama, Hideki Shohjoh, Noboru Adachi, Yasushi Kiyoki, Issei Fujishiro

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

Even when generated with the same weapon, a wound's appearance would be affected by its use and the assaulter's physique. In contrast, even if wounds look similar in shape and/or color, they could have a different wounding history. In this work, we strive to extract the features of shape and color from a given wound image and build on the mathematical model of meaning to create the associated semantics of the criminal act. We demonstrate that a system called THEMIS (theoretical estimation of the meaning of insults) provides a context-sensitive visual similarity analysis for wound imagery in computational forensics. The THEMIS system can help forensic doctors and e-court stakeholders potentially determine important aspects of a case through a comparison with wounds of corpses in past cases, in a way that is not currently possible.

本文言語English
ホスト出版物のタイトルProceedings - 2021 International Conference on Cyberworlds, CW 2021
編集者Alexei Sourin, Christophe Rosenberger, Olga Sourina
出版社Institute of Electrical and Electronics Engineers Inc.
ページ129-132
ページ数4
ISBN(電子版)9781665440653
DOI
出版ステータスPublished - 2021
イベント2021 International Conference on Cyberworlds, CW 2021 - Caen, France
継続期間: 2021 9月 282021 9月 30

出版物シリーズ

名前Proceedings - 2021 International Conference on Cyberworlds, CW 2021

Conference

Conference2021 International Conference on Cyberworlds, CW 2021
国/地域France
CityCaen
Period21/9/2821/9/30

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ ビジョンおよびパターン認識
  • メディア記述
  • モデリングとシミュレーション

フィンガープリント

「THEMIS: Context-Sensitive Similarity Analysis for Wound Imagery Using Mathematical Model of Meaning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル