Thermodynamic Formalism for Random Non-uniformly Expanding Maps

Manuel Stadlbauer, Shintaro Suzuki, Paulo Varandas

研究成果: Article査読

4 被引用数 (Scopus)

抄録

We develop a quenched thermodynamic formalism for a wide class of random maps with non-uniform expansion, where no Markov structure, no uniformly bounded degree or the existence of some expanding dynamics is required. We prove that every measurable and fibered C1-potential at high temperature admits a unique equilibrium state which satisfies a weak Gibbs property, and has exponential decay of correlations. The arguments combine a functional analytic approach for the decay of correlations (using Birkhoff cone methods) and Carathéodory-type structures to describe the relative pressure of not necessary compact invariant sets in random dynamical systems. We establish also a variational principle for the relative pressure of random dynamical systems.

本文言語English
ページ(範囲)369-427
ページ数59
ジャーナルCommunications in Mathematical Physics
385
1
DOI
出版ステータスPublished - 2021 7月

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Thermodynamic Formalism for Random Non-uniformly Expanding Maps」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル