Thermoresponsive polymer brush on monolithic-silica-rod for the high-speed separation of bioactive compounds

Kenichi Nagase, Jun Kobayashi, Akihiko Kikuchi, Yoshikatsu Akiyama, Hideko Kanazawa, Teruo Okano

研究成果: Article査読

46 被引用数 (Scopus)


Poly(N-isopropylacrylamide), one of the most utilized thermoresponsive polymers, brush-grafted monolithic-silica columns were prepared through surface-initiated atom transfer radical polymerization (ATRP) for effective thermoresponsive-chromatography matrices. ATRP initiator was grafted on monolithic silica-rod surfaces by flowing a toluene solution containing ATRP initiator into monolithic silica-rod columns. N-Isopropylacrylamide (IPAAm) monomer and CuCl/CuCl 2/Me 6TREN, an ATRP catalytic system, were dissolved in 2-propanol, and the reaction solution was pumped into the preprepared initiator-modified columns at 25 °C for 16 h. The constructed PIPAAm-brush structure on the monolithic silica-rod surface was confirmed by XPS, elemental analysis, SEM observation, and GPC measurement of grafted PIPAAm. The prepared monolithic silica-rod columns were also characterized by chromatographic analysis. PIPAAm-brush-modified monolithic silica-rod columns were able to separate hydrophobic steroids with a short analysis time (10 min), compared to PIPAAm-brush-modified silica-beads-packed columns, because of the horizontally limited diffusion path length of monolithic supporting materials. Additionally, diluted PIPAAm-brush monolithic silica-rod column gave a further shorting analysis time (5 min). These results indicated (1) surface-initiated ATRP constructed PIPAAm-brush structures on monolithic silica-rod surfaces and (2) PIPAAm-brush grafted monolithic silica-rod column prepared by ATRP was a promising tool for analyzing hydrophobic-bioactive compounds with a short analysis time.

出版ステータスPublished - 2011 9月 6

ASJC Scopus subject areas

  • 材料科学(全般)
  • 凝縮系物理学
  • 表面および界面
  • 分光学
  • 電気化学


「Thermoresponsive polymer brush on monolithic-silica-rod for the high-speed separation of bioactive compounds」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。