Topological defects in the Georgi-Machacek model

Chandrasekar Chatterjee, Masafumi Kurachi, Muneto Nitta

研究成果: Article査読

10 被引用数 (Scopus)

抄録

We study topological defects in the Georgi-Machacek model in a hierarchical symmetry breaking in which extra triplets acquire vacuum expectation values before the doublet. We find a possibility of topologically stable non-Abelian domain walls and non-Abelian flux tubes (vortices or cosmic strings) in this model. In the limit of the vanishing U(1)Y gauge coupling in which the custodial symmetry becomes exact, the presence of a vortex spontaneously breaks the custodial symmetry, giving rise to S2 Nambu-Goldstone (NG) modes localized around the vortex corresponding to non-Abelian fluxes. Vortices are continuously degenerated by these degrees of freedom, thereby called non-Abelian. By taking into account the U(1)Y gauge coupling, the custodial symmetry is explicitly broken, the NG modes are lifted to become pseudo-NG modes, and all non-Abelian vortices fall into a topologically stable Z string. This is in contrast to the standard model in which Z strings are nontopological and are unstable in the realistic parameter region. Non-Abelian domain walls also break the custodial symmetry and are accompanied by localized S2 NG modes. Finally, we discuss the existence of domain wall solutions bounded by flux tubes, where their S2 NG modes match. The domain walls may quantum mechanically decay by creating a hole bounded by a flux tube loop, and would be cosmologically safe. Gravitational waves produced from unstable domain walls could be detected by future experiments.

本文言語English
論文番号115010
ジャーナルPhysical Review D
97
11
DOI
出版ステータスPublished - 2018 6月 8

ASJC Scopus subject areas

  • 物理学および天文学(その他)

フィンガープリント

「Topological defects in the Georgi-Machacek model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル