Topological excitations in spinor Bose-Einstein condensates

Yuki Kawaguchi, Michikazu Kobayashi, Muneto Nitta, Masahito Ueda

研究成果: Article査読

20 被引用数 (Scopus)


A rich variety of order parameter manifolds of multicomponent Bose-Einstein condensates (BECs) admit various kinds of topological excitations, such as fractional vortices, monopoles, skyrmions, and knots. In this paper, we discuss two topological excitations in spinor BECs: non-Abelian vortices and knots. Unlike conventional vortices, non-Abelian vortices neither reconnect themselves nor pass through each other, but create a rung between them in a topologically stable manner. We discuss the collision dynamics of non-Abelian vortices in the cyclic phase of a spin-2 BEC. In the latter part, we show that a knot, which is a unique topological object characterized by a linking number or a Hopf invariant [π3(S2) = Z], can be created using a conventional quadrupole magnetic field in a cold atomic system.

ジャーナルProgress of Theoretical Physics
SUPPL. 186
出版ステータスPublished - 2010 12月 1

ASJC Scopus subject areas

  • 物理学および天文学(その他)


「Topological excitations in spinor Bose-Einstein condensates」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。