Topology of holomorphic lefschetz pencils on the four-torus

Noriyuki Hamada, Kenta Hayano

研究成果: Article査読

2 被引用数 (Scopus)

抄録

We discuss topological properties of holomorphic Lefschetz pencils on the four-torus. Relying on the theory of moduli spaces of polarized abelian surfaces, we first prove that, under some mild assumptions, the (smooth) isomorphism class of a holomorphic Lefschetz pencil on the four-torus is uniquely determined by its genus and divisibility. We then explicitly give a system of vanishing cycles of the genus-3 holomorphic Lefschetz pencil on the four-torus due to Smith, and obtain those of holomorphic pencils with higher genera by taking finite unbranched coverings. One can also obtain the monodromy factorization associated with Smith’s pencil in a combinatorial way. This construction allows us to generalize Smith’s pencil to higher genera, which is a good source of pencils on the (topological) four-torus. As another application of the combinatorial construction, for any torus bundle over the torus with a section we construct a genus-3 Lefschetz pencil whose total space is homeomorphic to that of the given bundle.

本文言語English
ページ(範囲)1515-1572
ページ数58
ジャーナルAlgebraic and Geometric Topology
18
3
DOI
出版ステータスPublished - 2018 4 9

ASJC Scopus subject areas

  • 幾何学とトポロジー

フィンガープリント

「Topology of holomorphic lefschetz pencils on the four-torus」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル