Transformation of Astrocytes to a Neuroprotective Phenotype by Microglia via P2Y1 Receptor Downregulation

Youichi Shinozaki, Keisuke Shibata, Keitaro Yoshida, Eiji Shigetomi, Christian Gachet, Kazuhiro Ikenaka, Kenji F. Tanaka, Schuichi Koizumi

研究成果: Article査読

194 被引用数 (Scopus)

抄録

Microglia and astrocytes become reactive following traumatic brain injury (TBI). However, the coordination of this reactivity and its relation to pathophysiology are unclear. Here, we show that microglia transform astrocytes into a neuroprotective phenotype via downregulation of the P2Y1 purinergic receptor. TBI initially caused microglial activation in the injury core, followed by reactive astrogliosis in the peri-injured region and formation of a neuroprotective astrocyte scar. Equivalent changes to astrocytes were observed in vitro after injury. This change in astrocyte phenotype resulted from P2Y1 receptor downregulation, mediated by microglia-derived cytokines. In mice, astrocyte-specific P2Y1 receptor overexpression (Astro-P2Y1OE) counteracted scar formation, while astrocyte-specific P2Y1 receptor knockdown (Astro-P2Y1KD) facilitated scar formation, suggesting critical roles of P2Y1 receptors in the transformation. Astro-P2Y1OE and Astro-P2Y1KD mice showed increased and reduced neuronal damage, respectively. Altogether, our findings indicate that microglia-astrocyte interaction, involving a purinergic signal, is essential for the formation of neuroprotective astrocytes.

本文言語English
ページ(範囲)1151-1164
ページ数14
ジャーナルCell Reports
19
6
DOI
出版ステータスPublished - 2017 5月 9

ASJC Scopus subject areas

  • 生化学、遺伝学、分子生物学(全般)

フィンガープリント

「Transformation of Astrocytes to a Neuroprotective Phenotype by Microglia via P2Y1 Receptor Downregulation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル