Translation-independent circadian control of the cell cycle in a unicellular photosynthetic eukaryote

Shin Ya Miyagishima, Takayuki Fujiwara, Nobuko Sumiya, Shunsuke Hirooka, Akihiko Nakano, Yukihiro Kabeya, Mami Nakamura

研究成果: Article査読

49 被引用数 (Scopus)

抄録

Circadian rhythms of cell division have been observed in several lineages of eukaryotes, especially photosynthetic unicellular eukaryotes. However, the mechanism underlying the circadian regulation of the cell cycle and the nature of the advantage conferred remain unknown. Here, using the unicellular red alga Cyanidioschyzon merolae, we show that the G1/S regulator RBR-E2F-DP complex links the G1/S transition to circadian rhythms. Time-dependent E2F phosphorylation promotes the G1/S transition during subjective night and this phosphorylation event occurs independently of cell cycle progression, even under continuous dark or when cytosolic translation is inhibited. Constitutive expression of a phospho-mimic of E2F or depletion of RBR unlinks cell cycle progression from circadian rhythms. These transgenic lines are exposed to higher oxidative stress than the wild type. Circadian inhibition of cell cycle progression during the daytime by RBR-E2F-DP pathway likely protects cells from photosynthetic oxidative stress by temporally compartmentalizing photosynthesis and cell cycle progression.

本文言語English
論文番号3807
ジャーナルNature communications
5
DOI
出版ステータスPublished - 2014 5月 8
外部発表はい

ASJC Scopus subject areas

  • 化学 (全般)
  • 生化学、遺伝学、分子生物学(全般)
  • 物理学および天文学(全般)

フィンガープリント

「Translation-independent circadian control of the cell cycle in a unicellular photosynthetic eukaryote」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル