抄録
Let X be a Calabi-Yau threefold and μ the symmetric trilinear form on the second cohomology group H2(X, ℤ) defined by the cup product. We investigate the interplay between the Chern classes c2(X), c3(X) and the trilinear form μ, and demonstrate some numerical relations between them. When the cubic form μ (x, x, x) has a linear factor over ℝ, some properties of the linear form and the residual quadratic form are also obtained.
本文言語 | English |
---|---|
ページ(範囲) | 203-213 |
ページ数 | 11 |
ジャーナル | Osaka Journal of Mathematics |
巻 | 51 |
号 | 1 |
出版ステータス | Published - 2014 1月 |
外部発表 | はい |
ASJC Scopus subject areas
- 数学 (全般)