Twisted mellin transforms of a real analytic residue of siegeleisenstein series of degree 2

Yasuko Hasegawa, Takuya Miyazaki

研究成果: Article査読

2 被引用数 (Scopus)

抄録

We study a residual form of a real analytic SiegelEisenstein series, which generates a certain derived functor module occurring in a degenerate principal series representation. We compute its Mellin transforms twisted by various Maass wave forms to get explicit formulas as our results. We apply them to prove meromorphic continuations together with functional equations which are satisfied by those twisted Mellin transforms.

本文言語English
ページ(範囲)1011-1027
ページ数17
ジャーナルInternational Journal of Mathematics
20
8
DOI
出版ステータスPublished - 2009 8

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Twisted mellin transforms of a real analytic residue of siegeleisenstein series of degree 2」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル