Ultrahigh-Sensitive Compression-Stress Sensor Using Integrated Stimuli-Responsive Materials

Minami Nakamitsu, Keigo Oyama, Hiroaki Imai, Syuji Fujii, Yuya Oaki

研究成果: Article査読

21 被引用数 (Scopus)


Measurement of mechanical stresses, such as compression, shear, and tensile stresses, contributes toward achieving a safer and healthier life. In particular, the detection of weak compression stresses is required for healthcare monitoring and biomedical applications. Compression stresses in the order of 106–1010 Pa have been visualized and/or quantified using mechano-responsive materials in previous works. However, in general, it is not easy to detect compression stresses weaker than 103 Pa using conventional mechano-responsive materials because the dynamic motion of the rigid mechano-responsive molecules is not induced by such a weak stress. In the present work, weak compression stresses in the order of 100–103 Pa are visualized and measured via the integration of stimuli-responsive materials, such as layered polydiacetylene (PDA) and dry liquid (DL), through response cascades. DLs consisting of liquid droplets covered by solid particles release the interior liquid and collapse with application of a weak compression stress. The color of the layered PDA is changed by the spilled liquid as a chemical stress. A variety of weak compression stresses, such as expiratory pressure, are visualized and colorimetrically measured using the paper-based device of the integrated stimuli-responsive materials. Diverse mechano-sensing devices can be designed via the integration of stimuli-responsive materials.

ジャーナルAdvanced Materials
出版ステータスPublished - 2021 4月 8

ASJC Scopus subject areas

  • 材料科学(全般)
  • 材料力学
  • 機械工学


「Ultrahigh-Sensitive Compression-Stress Sensor Using Integrated Stimuli-Responsive Materials」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。