Value distribution of leafwise holomorphic maps on complex laminations by hyperbolic Riemann surfaces

研究成果: Article査読

2 被引用数 (Scopus)

抄録

We discuss the value distribution of Borel measurable maps which are holomorphic along leaves of complex laminations. In the case of complex lamination by hyperbolic Riemann surfaces with an ergodic harmonic measure, we have a defect relation appearing in Nevanlinna theory. It gives a bound of the number of omitted hyperplanes in general position by those maps.

本文言語English
ページ(範囲)477-501
ページ数25
ジャーナルJournal of the Mathematical Society of Japan
69
2
DOI
出版ステータスPublished - 2017

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Value distribution of leafwise holomorphic maps on complex laminations by hyperbolic Riemann surfaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル