Vibration reduction of rotor supported by superconducting magnetic bearing utilizing electromagnetic shunt damp

Masahiko Sasaki, Toshihiko Sugiura

研究成果: Article査読

7 被引用数 (Scopus)

抄録

A superconducting magnetic bearing can levitate a rotor without control and is expected to be applied to flywheel energy storage systems. However, because the levitation force has nonlinearity, the rotor can show nonlinear vibrations such as subharmonic resonance and superharmonic resonance. Therefore, it is necessary to suppress the amplitude of nonlinear vibration of the rotor. Recently, an 'electromagnetic shunt damper,' which can replace a dynamic vibration absorber, has been researched. The purpose of this study is to investigate whether an electromagnetic shunt damper can suppress the nonlinear vibration of a rotor supported by a superconducting magnetic bearing. We obtained the system's governing equations via an analytical model and nondimensionalized the equations. Linear analysis was performed, and we confirmed that an electromagnetic shunt damper is effective against linear systems. Furthermore, numerical calculations via the Rung-Kutta method were carried out. The obtained results show that an electromagnetic shunt damper can suppress the vibration amplitude of primary resonance and subharmonic resonance of order 1/2.

本文言語English
論文番号7407365
ジャーナルIEEE Transactions on Applied Superconductivity
26
3
DOI
出版ステータスPublished - 2016 4

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • 電子工学および電気工学

フィンガープリント

「Vibration reduction of rotor supported by superconducting magnetic bearing utilizing electromagnetic shunt damp」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル