TY - JOUR
T1 - Vicious walks with a wall, noncolliding meanders, and chiral and Bogoliubov–de Gennes random matrices
AU - Katori, Makoto
AU - Tanemura, Hideki
AU - Nagao, Taro
AU - Komatsuda, Naoaki
PY - 2003/1/1
Y1 - 2003/1/1
N2 - Spatially and temporally inhomogeneous evolution of one-dimensional vicious walkers with wall restriction is studied. We show that its continuum version is equivalent with a noncolliding system of stochastic processes called Brownian meanders. Here the Brownian meander is a temporally inhomogeneous process introduced by Yor as a transform of the Bessel process that is the motion of radial coordinate of the three-dimensional Brownian motion represented in spherical coordinates. It is proved that the spatial distribution of vicious walkers with a wall at the origin can be described by the eigenvalue statistics of Gaussian ensembles of Bogoliubov–de Gennes Hamiltonians of the mean-field theory of superconductivity, which have a particle-hole symmetry. We report that a time evolution of the present stochastic process is fully characterized by the change of symmetry classes from type C to type [Formula presented] in the nonstandard classes of random matrix theory of Altland and Zirnbauer. The relation between the noncolliding systems of the generalized meanders of Yor, which are associated with the even-dimensional Bessel processes, and the chiral random matrix theory is also clarified.
AB - Spatially and temporally inhomogeneous evolution of one-dimensional vicious walkers with wall restriction is studied. We show that its continuum version is equivalent with a noncolliding system of stochastic processes called Brownian meanders. Here the Brownian meander is a temporally inhomogeneous process introduced by Yor as a transform of the Bessel process that is the motion of radial coordinate of the three-dimensional Brownian motion represented in spherical coordinates. It is proved that the spatial distribution of vicious walkers with a wall at the origin can be described by the eigenvalue statistics of Gaussian ensembles of Bogoliubov–de Gennes Hamiltonians of the mean-field theory of superconductivity, which have a particle-hole symmetry. We report that a time evolution of the present stochastic process is fully characterized by the change of symmetry classes from type C to type [Formula presented] in the nonstandard classes of random matrix theory of Altland and Zirnbauer. The relation between the noncolliding systems of the generalized meanders of Yor, which are associated with the even-dimensional Bessel processes, and the chiral random matrix theory is also clarified.
UR - http://www.scopus.com/inward/record.url?scp=85035196840&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85035196840&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.68.021112
DO - 10.1103/PhysRevE.68.021112
M3 - Article
AN - SCOPUS:85035196840
VL - 68
JO - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
JF - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
SN - 1063-651X
IS - 2
ER -