Virtual unknotting numbers of certain virtual torus knots

Masaharu Ishikawa, Hirokazu Yanagi

研究成果: Article査読

1 被引用数 (Scopus)

抄録

The virtual unknotting number of a virtual knot is the minimal number of crossing changes that makes the virtual knot to be the unknot, which is defined only for virtual knots virtually homotopic to the unknot. We focus on the virtual knot obtained from the standard (p,q)-torus knot diagram by replacing all crossings on one overstrand into virtual crossings and prove that its virtual unknotting number is equal to the unknotting number of the (p,q)-torus knot, that is, (p - 1)(q - 1)/2.

本文言語English
論文番号1750070
ジャーナルJournal of Knot Theory and its Ramifications
26
11
DOI
出版ステータスPublished - 2017 10月 1
外部発表はい

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「Virtual unknotting numbers of certain virtual torus knots」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル