Viscoelasticity-induced pulsatile motion of 2D roll cell in laminar wall-bounded shear flow

Tomohiro Nimura, Takuya Kawata, Takahiro Tsukahara

研究成果: Article査読

1 被引用数 (Scopus)

抄録

For the clarification of the routes to elasto-inertial turbulence (EIT), it is essential to understand how viscoelasticity modulates coherent flow structures including the longitudinal vortices. We focused on a rotating plane Couette flow that provides two-dimensional (2D) roll cells for the steady laminar Newtonian-fluid case, and we investigated how the steady longitudinal vortices are modulated by viscoelasticity at different Weissenberg numbers. The viscoelasticity was found to induce an unsteady flow state where the 2D roll-cell structure was periodically enhanced and damped with a constant period, keeping the homogeneity in the streamwise direction. This pulsatile motion of the roll cell was caused by a time lag in the response of the viscoelastic force to the vortex development. Both the pulsation period and time lag were found to be scaled by the turnover time of cell rotation rather than by the relaxation time, despite the viscoelasticity-induced instability. We also discuss the counter torque on the roll cell and the net energy balance, considering their relevance to polymer drag reduction and EIT.

本文言語English
ページ(範囲)65-75
ページ数11
ジャーナルInternational Journal of Heat and Fluid Flow
74
DOI
出版ステータスPublished - 2018 12月
外部発表はい

ASJC Scopus subject areas

  • 凝縮系物理学
  • 機械工学
  • 流体および伝熱

フィンガープリント

「Viscoelasticity-induced pulsatile motion of 2D roll cell in laminar wall-bounded shear flow」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル