Vortex counting from field theory

Toshiaki Fujimori, Taro Kimura, Muneto Nitta, Keisuke Ohashi

研究成果: Article査読

11 被引用数 (Scopus)

抄録

The vortex partition function in 2d N = (2, 2) U(N) gauge theory is derived from the field theoretical point of view by using the moduli matrix approach. The character for the tangent space at each moduli space fixed point is written in terms of the moduli matrix, and then the vortex partition function is obtained by applying the localization formula. We find that dealing with the fermionic zero modes is crucial to obtain the vortex partition function with the anti-fundamental and adjoint matters in addition to the fundamental chiral multiplets. The orbifold vortex partition function is also investigated from the field theoretical point of view.

本文言語English
論文番号28
ジャーナルJournal of High Energy Physics
2012
6
DOI
出版ステータスPublished - 2012

ASJC Scopus subject areas

  • 核物理学および高エネルギー物理学

フィンガープリント

「Vortex counting from field theory」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル