Wrist EMG signals identification using neural network

Tadahiro Oyama, Yasue Mitsukura, Stephen Githinji Karungaru, Satoru Tsuge, Minoru Fukumi

研究成果: Paper査読

12 被引用数 (Scopus)

抄録

Recently, researches of artificial arms and pointing devices using ElectroMyoGram(EMG) have been actively done. However, EMG is usually measured from a part with comparatively big muscular fibers such as arms and shoulders. Therefore, if we can recognize wrist motions using EMG which was measured from the wrist, the range of application will extend furthermore. Moreover, it is predicted that convenience in putting on and taking off the electrode improves. Therefore, we focus on EMG measured from the wrist. In this paper, we aim the construction of wrist EMG recognition system by using fast statistical method and neural network.

本文言語English
ページ4286-4290
ページ数5
DOI
出版ステータスPublished - 2009 12 1
外部発表はい
イベント35th Annual Conference of the IEEE Industrial Electronics Society, IECON 2009 - Porto, Portugal
継続期間: 2009 11 32009 11 5

Other

Other35th Annual Conference of the IEEE Industrial Electronics Society, IECON 2009
国/地域Portugal
CityPorto
Period09/11/309/11/5

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 電子工学および電気工学

フィンガープリント

「Wrist EMG signals identification using neural network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル