Zeta determinant for Laplace operators on Riemann caps

Antonino Flachi, Guglielmo Fucci

研究成果: Article査読

8 被引用数 (Scopus)

抄録

The goal of this paper is to compute the zeta function determinant for the massive Laplacian on Riemann caps (or spherical suspensions). These manifolds are defined as compact and boundaryless D-dimensional manifolds deformed by a singular Riemannian structure. The deformed spheres, considered previously in the literature, belong to this class. After presenting the geometry and discussing the spectrum of the Laplacian, we illustrate a method to compute its zeta regularized determinant. The special case of the deformed sphere is recovered as a limit of our general formulas.

本文言語English
論文番号023503
ジャーナルJournal of Mathematical Physics
52
2
DOI
出版ステータスPublished - 2011 2月 3
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Zeta determinant for Laplace operators on Riemann caps」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル